Poster Lisa Storre-loubardi SIRTF FIRST LOOK SURVEY

The SIRTF First Look Survey

Overview of the First Look Survey SIRTE

- What: A survey to characterize the sky at the sensitivity levels easily achieved by SIRTF, to aid the first wave of observers
 - Target of 100 hours of Director's Discretionary Time
 - 3 components: Extragalactic, Galactic, & Solar System
- Why: The loss of WIRE deprived the community of knowledge of the mid-infrared sky (esp. at 24 μm) at faint flux levels
 - FLS recommended by Williams Committee
- ◆ When: FLS observations to occur right after the observatory is commissioned. Data products to be publicly available as soon as they are deemed reliable.
 - Survey plan must be robust against changes in launch date
- ♦ Who: The SSC will lead the FLS effort, with Instrument Team involvement, and community input
 - Community Workshop held in Sept. 1999
- ◆ Details: "First Look Survey" link at http://sirtf.caltech.edu

FLS Extragalactic Component

- Preliminary plan: map 5 sq.deg. with IRAC & MIPS at "shallow" level, roughly one minute per pixel on sky
 - 4 sq.deg within Constant Viewing Zone, in area of lowest cirrus near 17h15m+59d30m, where I(100μm)=1-2 MJy/sr
 - 1 sq.deg location depends on sky visible at end of IOC:
 - in near-CVZ area of low cirrus at 16h20+54d30' (ELAIS N1 field), where I(100 μ m)=0.4 MJy/sr (accessible from end of IOC to Sep 2002),
 - ◆ OR within CVZ if area above not accessible at start of science mission
- ◆ Within above area, a <u>verification</u> survey of ≤0.25 sq.deg, covered with much greater redundancy, with both IRAC & MIPS
- ◆ Ancillary data planned (will be available after processing):
 - NOAO has committed to optical survey, to R(5σ)~25.5mag
 - Sloan has agreed to observe FLS fields (details to be worked out)
 - Proposal submitted for VLA survey at 1.4GHz to 5σ =90 micro-Jy
 - Options under study for near-IR survey to K~18mag

The SIRTF First Look Survey

Preliminary layout of CVZ field on 100 um map

SIRTF

Legend:

R=Bright
Radio Source

IR=Bright IR source (any IRAS band)

C=Calibrator Candidate

FLS Extragalactic Details

- ◆ "Shallow" survey in MIPS scan-map with 5 passes at fast speed:
 - ullet Total T(integration)= 75 seconds at 24 and 70 μ m. T(int)=15 sec at 160 μ m
 - ullet Depth reached is 1.3 mJy at 24 μ m; confusion-limited at 160 μ m
 - ◆ Rate=1deg² per 4 hours. Estimates for a 5 deg², 20 hr survey:

Lambda	5-sigm a	Gain/past	Src Count	The second secon	
24	1.3 m Jy	~100	~400	**************************************	
70	4.5 m Jy	~50	~1,500		
160	27.0 mJy	~8*	~2,500	* ISO covered a few sq deg	

- "Shallow" IRAC survey, four bands simultaneously:
 - ◆ T(integration) = 5× 12 sec per point; requires ~5hr per deg².
 - ♦ Estimates for 5 deg², 25 hour survey:

Lambda	5-sigm a	Gain/past	Src Count	z(L* Ellip)	
3.6 & 4.5	0.04 mJy	>>1	stars+?	~1	Note that the second of the se
5.8	0.04 mJy	~1*	stars+?	~0.4	* ISO covered a few
8.0	0.06 mJy	~1*	~1500	~0.3	sq arcmin

◆ Verification may use same, or more integration time per sighting

FLS Galactic Component

- ◆ Plan: characterize cirrus and source counts at low Galactic latitudes in two strips, with IRAC and MIPS at "shallow" extragalactic level:
 - At ℓ=285°, a strip 5' wide and running -30°<b<0°
 - ♦ Fully sampled for -10°<b<0°, but partially filled in for -30°<b<-10°
 - At Æ150°, a strip 5' wide and running 0° < b < 10°</p>
 - Strips can shift in longitude if launch delayed several months
- One strip for characterizing cirrus and source counts toward molecular cloud
 - A 5' by 2° strip through Cham II cloud centered at 12h50m-77d (available from Feb 01 2002 to Sep 18 2002)
 - Backup clouds in case of launch slip are under study
 - Same MIPS depth as in extragalactic plan, but 10x more time in IRAC
- ♦ No pre-launch ancillary data recommended

FLS Solar System Component

- ◆ Goal: Characterize the moving object population (number counts, diameters, scale heights), and characterize the zodiacal light
- ◆ 2 fields of 0.2 sq deg each
 - one in the ecliptic and the other 10-15 degrees out of ecliptic
 - 110-120 degrees solar elongation, pointing back towards the Earth
 - fields are independent of launch date, except avoid Galactic Plane
- ◆ 3 passes with IRAC in each field to detect moving objects
 - 2-3 hours between each pass
 - 0.06 mJy detection limit with IRAC (8.0 microns)
- ◆ 1 wider area pass with MIPS to detect objects found by IRAC
 - 1.3 mJy detection limit for MIPS (24 microns)
- ◆ In ecliptic, detect 108 asteroids with IRAC, 56 asteroids with MIPS, many with diameter less than 1 km
- ◆ Simultaneous ground-based visual observations required
 - to V=25 if possible

